UTILIZATION OF SOY OKARA IN PREPARATION OF NUTRACEUTICAL BUNS

JEAN PANKUKU MALAWI

AFRICA FARM MANAGEMENT ASSOCIATION 8TH CONGRESS, NAIROBI, KENYA.

Introduction

- Malawi and many other African countries depend on maize and other cereals for their staple food.
- Apart from maize, root tubers like potatoes and cassava are used in many other parts.
- These are basically starchy and do not provide nutritionally balanced meals though eaten in large quantities
- The majority of pple in rural areas are therefore at high risk in terms of protein energy malnutrition

Introduction

- There is need therefore to include other food stuffs to ensure healthy meals.
- Soy bean is an alternative protein source for rural communities
- It is utilized in different forms
- Soy beans are highly digestible, high in unsaturated FAs & contain no cholesterol.
- Soybean & its products are relatively inexpensive protein source as compared to animal sources

Introduction cont'

- A number of initiatives have been done by some NGOs, academic institutions, food industry companies and the govt to promote the use of soy.
- Soy okara is a by-product of soy milk processing that is often unutilized or underutilized.
- It is not only a rich source of dietary fibre, but also contain high quality protein.
- Buns and breads prepared from refined wheat flour are deficient in proteins, vitamins, minerals and fibre. & these need to be replaced.

Aim

 To asses the potential of incorporating soy okara in bakery products to improve the nutritional quality.

Specific objectives

- Effects on sensory quality
- Effects on physical properties
- Effects on nutritional quality

Materials & Methods

- Ingredients for preparation of buns were sourced from local market
- Buns were prepared using the standard recipe
- Preliminary studies were conducted based on the std recipe to establish %ge of okara supplementation thru sensory evaluation.
- Okara was incorporated at 5, 10 & 15%
- The sensory attributes were assessed by 15 semitrained panel on 9-point hedonic scale.

Materials & methods cont...

- Physical properties were measured by weighing & measuring scales
- Volume was measured using the mustard seed displacement method
- The proximate analysis was done using the std methods given by AOAC (1992)
- Moisture was analyzed using MBS4 Moisture Analyzer

Results & discussion

Sensory analysis

Table 1: sensory attributes of okara buns (mean scores)

Bun Type	CC	CCA	Α	TX	Т	CE	OA
Control 5% okara 10% okara 15% okara	9.00 9.00 8.20 7.50	9.00 9.00 8.60 7.50	8.50 8.00 7.00 6.00	9.00 7.00 6.00 5.00	9.00 9.00 7.00 6.00	8.50 7.00 6.00 5.00	9.00 8.00 7.50 6.00
SEM	0.43	0.16	0.36	0.66	0.32	0.66	0.41
CD at 5%	1.94	0.70	1.61	2.98	1.45	2.98	1.84

- Buns were accepted at 10% level of supplementation
- There was no significant effect on the sensory parameters (colour & appearance, aroma & taste).
- The darker crust colour was due to increased maillard reaction btwn reducing sugars & proteins.
- Texture and elasticity mean scores were greatly reduced due to dough weakening caused by a decrease in gluten protein.

Physical characteristics

Table 2: Physical characteristics of okara buns

Bun Type	Vol (ml)	SV (ml/g)	Height (cm)	Area (cm sq)	Wt (g)	DRC (%)
Control 5% okara 10% okara 15% okara	121.67 92.33 71.67 30.00	2.08 1.54 1.43 0.60	4.70 3.90 3.70 3.07	35.00 35.20 36.68 35.68	58.88 51.09 51.67 51.88	320 460 375 200
SEM	5.27	0.09	0.21	1.04	1.40	
CD at 5%	23.71	0.39	0.97	0.97	6.31	

- The physical properties were greatly reduced with increased addition of okara due to dilution of gluten network and increased fibre content.
- Buns accepted at 5% in terms of physical characteristics
- There was no consistent pattern in weight and area amongst the buns.
- Okara flour affected the dough extensibility properties, gas retention properties and bread quality

Proximate analysis Table 3: proximate analysis of okara buns (%)

Bun Type	Carbs	Protein s	Fat	Ash	МС	Fibre	EV (Kcal)
Control 5% okara 10% okara 15% okara	62.39 62.07 59.91 58.38	2.04 2.34 5.91 6.79	3.87 5.76 6.82 8.80	1.39 1.46 1.91 2.13	30.28 26.07 22.05 19.08	0.03 1.61 3.65 4.82	292.55 308.88 314.24 339.88
SEM	2.11	0.46	0.39	0.02	0.57	-	-
CD at 5%	9.50	2.06	1.77	0.10	2.59	-	-

- The results show improvement in proximate composition with the addition of soy okara.
- Proteins, fats, fibre and ash were increased. This is attributed to higher protein, fat, fibre and ash of soy beans.
- Carbohydrate and moisture contents were reduced.
- Energy was increased in okara buns due to increase in fat content

Nutraceutical content

- Incorporation of okara flour increased amount of isoflavones from 0 in control buns to 2.027mg at 15%.
- Isoflavones help in treating hypertension, high cholesterol, menopose symptoms, osteoporosis among other diseases.

Conclusion

- Soy okara was successfully incorporated in buns
- There was significant improvement in nutritional and nutraceutical content on buns.
- The high nutritious buns can there4 be prepared by supplementing wheat flour with okara flour.
- This is of nutritional importance in developing countries where pple struggle to get proteineous foods.

Recommendations

- There is need to create awareness on the incorporation of soy by-products to improve the nutritional & healthy status of pple.
- Domestic level processing and utilization of these by-products should be given a priority in rural areas.

THANK YOU